2022-03-30 21:32:13 +02:00
2022-03-30 15:35:48 +02:00
2022-03-30 15:35:20 +02:00
2022-03-29 21:19:04 +02:00
2022-03-30 15:34:03 +02:00
2022-03-30 19:23:39 +02:00
2022-03-30 18:48:44 +02:00
2022-03-30 18:48:44 +02:00
2022-03-30 17:09:41 +02:00
2022-03-30 15:35:31 +02:00
2022-03-30 17:09:47 +02:00
2022-03-30 17:09:47 +02:00
2022-03-30 21:32:13 +02:00
2022-03-30 21:32:13 +02:00
2022-03-30 17:09:47 +02:00

Datathon

Data sources

./download.sh

Quick start

Requirements:

  • Docker
  • Python
  • pipenv
docker run --name datathon_postgres -p 13339:5432 -e POSTGRES_PASSWORD=geheim -d postgis/postgis
pipenv install
pipenv shell
export FLASK_APP=app
flask db upgrade

# Start importing data
flask import_postcodes data/postcodes/de.csv
flask import_open_corporates data/open_corporates/de_companies_ocdata.jsonl
flask import_ted data/ted

Example requests

curl http://localhost:5000/companies?name=Forschungszentrum
curl http://localhost:5000/companies/1220137
curl http://localhost:5000/persons?name=Dorothee%20Dzwonnek
curl http://localhost:5000/persons/805196

curl http://localhost:5000/queryies/persons_most_companies
curl http://localhost:5000/queryies/companies_hightes_tender_value_sum

Tools

make test
make lint
make pretty
Description
No description provided
Readme 68 KiB
Languages
Python 95.2%
Shell 2%
Mako 1.5%
Makefile 1%
Nix 0.3%