

itk AVtobvS Sàrl

AHX-Preliminary Security Analysis
Symmetric block cipher proposition for Post-quantum cryptography

KUDELSKI SECURITY

 29.04.2019

AHX-Preliminary Security Analysis – itk AVtobvS Sàrl

29.04.2019 2 © 2019 Nagravision SA / All rights reserved

DOCUMENT PROPERTIES
Version: 01.05

File name: 2019-04-29-Kudelski-AHX-Analysis-
v01.05.docx

Publication date: 29.04.2019

Document Owner: Benoît Gerhard

Document Recipient: Stiepan Aurélien Kovac

Document Status: Approved

Client Company Name: itk AVtobvS Sàrl

Recipients
Stiepan Aurélien Kovac

itk AVtobvS Sàrl

chemin de Monséjour n. 2

CH-1700 Fribourg

Switzerland

Kudelski Contact
In case of questions regarding this document please contact:

Benoît Gerhard

Head of Security Evaluation & Attacks

IoT Security Labs

Route de Genève 22-24

1033 Cheseaux-sur-Lausanne

AHX-Preliminary Security Analysis – itk AVtobvS Sàrl

29.04.2019 3 © 2019 Nagravision SA / All rights reserved

TABLE OF CONTENTS
DOCUMENT PROPERTIES .. 2

TABLE OF CONTENTS .. 3

TABLE OF FIGURES .. 4

TABLE OF TABLES .. 4

EXECUTIVE SUMMARY ... 5

INTRODUCTION ... 6

1. AHX overview ... 6

1.1. High level proposition .. 6

1.2. AHX Key schedule .. 7

1.3. AHX Block cipher .. 8

2. Security analysis .. 9

2.1. Consistency of the primitives ... 9

2.2. Key ...10

2.3. Input Block size ..10

2.4. Key schedule..11

2.5. Rounds number ..12

2.6. Implementations ...13

2.7. Additional Comments ...14

DOCUMENT HISTORY ..14

DOCUMENT RECIPIENTS ..14

KUDELSKI SECURITY CONTACTS ..14

REFERENCES ...15

Copyright notice
Kudelski Security, a business unit of Nagravision SA is a member of the Kudelski Group of Companies.
This document is the intellectual property of Kudelski Security and contains confidential and privileged
information.
The reproduction, modification, or communication to third parties (or to other than the addressee) of
any part of this document is strictly prohibited without the prior written consent from Nagravision SA.

AHX-Preliminary Security Analysis – itk AVtobvS Sàrl

29.04.2019 4 © 2019 Nagravision SA / All rights reserved

TABLE OF FIGURES
Figure 1: Security levels targeted according to algorithms ... 7

Figure 2: AHX global scheme .. 9

TABLE OF TABLES
Table 1: Hash functions used in the HKDF extended key schedule according to key length .. 7

Table 2: Spongent functions in the extended key schedule according to key length 8

Table 3: Round numbers according to key length .. 8

Table 4: References ...15

AHX-Preliminary Security Analysis – itk AVtobvS Sàrl

29.04.2019 5 © 2019 Nagravision SA / All rights reserved

EXECUTIVE SUMMARY

In a context where the amount of research on quantum computers is increasing, threats for

classical cryptography appears.

For asymmetric cryptography and due to the efficiency of Shor's algorithm [15], NIST has

launched a challenge to solicit, evaluate, and standardize one or more quantum-resistant

public-key cryptographic algorithms.

Due to the quantum Grover’s algorithm for hash functions with 𝑛 bits input, the preimage

resistance is reduced to 2
𝑛

2 ([12], [13]). It has the same impact on the key search [9], in case

of symmetric block ciphers, thus doubling the key size can effectively enable to maintain

security level.

The purpose of the AHX would be to offer a solution for embedded devices in the context of

5G and resistance to attacks possible on quantum computers.

It has been requested by itk AVtobvS Sàrl to Kudelski to provide some feedback regarding

the security of the current proposal, that is the main goal of this report and it is not a code

review.

AHX-Preliminary Security Analysis – itk AVtobvS Sàrl

29.04.2019 6 © 2019 Nagravision SA / All rights reserved

INTRODUCTION

The first high level security analysis presented in this report is focused on the block cipher

called AHX.

This report analysis (and also rev 1.02) has been conducted using only the source codes

available on following links, with the revision 1.0.06g and which corresponds to what was

delivered to Kudelski:

• https://github.com/Steppenwolfe65/CEX/tree/master/CEX/AHX.cpp v1.006f

• https://github.com/Steppenwolfe65/CEX/blob/master/CEX/AHX.h v1.006d

• https://github.com/Steppenwolfe65/CEX/blob/master/CEX/HKDF.cpp v1.006f

• https://github.com/Steppenwolfe65/CEX/blob/master/CEX/HMAC.cpp v1.006f

Others files might have been taken into account but due to short time constraint, it has not

been possible.

Note that another similar block cipher proposal can be found in the CEX crypto library: SHX

which is based on the Serpent block cipher. The difference is the underlying block cipher.

AHX could beconsidered as the most interesting of such instances, because optimized

hardware and processors are generally available for the AES block cipher.

1. AHX OVERVIEW

1.1. High level proposition

AHX seems to have a flexible design to enable the user to handle the required security level

according to the context.

Key lengths from 128 to 1024 bits are handled. The supported key sizes in extended mode

are fixed at 256, 512, and an experimental 1024-bit.

The key schedule generator options are limited to HKDF(SHA2-256/512) or cSHAKE-

256/512/1024. This is set through the constructors BlockCipherExtension parameter. The

cipher can process 128, 192, 256-bit and 512 bits keys in standard mode, and 256, 512, and

1024-bit keys in extended mode. There are no other legal key sizes, and using an

unsupported key size will throw an exception.

The selection of the security level is linked to time, so the following question should be

answered before the cryptographic primitives’ selection: how long shall the data be safe?

One goal of this analysis will be to give first elements regarding the targeted security level.

In Figure 1 we have summarized the proposal.

https://github.com/Steppenwolfe65/CEX/tree/master/CEX/AHX.cpp
https://github.com/Steppenwolfe65/CEX/blob/master/CEX/AHX.h
https://github.com/Steppenwolfe65/CEX/blob/master/CEX/HKDF.cpp
https://github.com/Steppenwolfe65/CEX/blob/master/CEX/HMAC.cpp

AHX-Preliminary Security Analysis – itk AVtobvS Sàrl

29.04.2019 7 © 2019 Nagravision SA / All rights reserved

Figure 1: Security levels targeted according to algorithms

1.2. AHX Key schedule

AHX can use two different key schedules.

The first one is the standard AES key schedule, which is originally specified for AES for 128,

192 and 256-bit keys. AHX extends it to be able to process 512-bit keys. The length of the

key determines the number of rounds (and round keys); given 𝑘 ≤ 512 the number of key

bits, the number of rounds is given by 𝑅𝑛𝑏 =
𝑘

32
+ 6.

The second key schedule which is called Secure Expand is based on a key derivation

mechanism that can be either HKDF based on HMAC with following hash primitives SHA2-

256 or SHA2-512, or cSHAKE-256 or cSHAKE512 [22] which are based on Keccak

permutation. In this key schedule context, the round keys are generated by calling iteratively

the key derivation until all needed bytes are generated. The number of rounds in this case is

given by 𝑅𝑛𝑏 = 𝑀𝑖𝑛 {
𝑘

32
+ 14, 38}.

Key length (in bits)
Hash function in the key

schedule

256 SHA256

512 SHA256

1024 SHA512

Table 1: Hash functions used in the HKDF extended key schedule according to key length

Security level in context of
Post Quantum computer

?128 bits 512 bits

AES 256 bits
AHX 256 bits

AHX 1024 bits

Security level in context of
classical computer

?128 bits 256 bits

AES 128 bits
AES 256 bits
AHX 256 bits

Security level

?

256 bits

AHX 512 bits

AHX-Preliminary Security Analysis – itk AVtobvS Sàrl

29.04.2019 8 © 2019 Nagravision SA / All rights reserved

Key length (in bits)
Hash function in the key

schedule

256 cSHAKE256

512 cSHAKE256

1024 cSHAKE512

Table 2: Spongent functions in the extended key schedule according to key length

1.3. AHX Block cipher

AHX block cipher round is fully equivalent to AES one.

As defined in the key schedule based on HKDF, the number of rounds is defined according

to the input key size.

Given 𝑘 ≤ 1024 the number of key bits: 𝑅𝑛𝑏 = 𝑀𝑖𝑛 {
𝑘

32
+ 14, 38}.

Key length (in bits) Rounds numbers

256 22

512 30

1024 38

Table 3: Round numbers according to key length

Figure 2 below shows an overview of the AHX execution when using the HKDF-based key

schedule with SHA256 underlying hash function and for key length that should not exceed

512 bits.

AHX-Preliminary Security Analysis – itk AVtobvS Sàrl

29.04.2019 9 © 2019 Nagravision SA / All rights reserved

Figure 2: AHX global scheme

2. SECURITY ANALYSIS

In Figure 2 we have pointed in red the elements that must be handled carefully to guarantee

the security level of the whole algorithm.

2.1. Consistency of the primitives

In the analyzed library CEX, it is proposed to manage the security consistency of the

cryptographic primitives by the LegalKeySize() function in the code. The rounds are fixed at

22, 30, and 38, corresponding to key sizes 256, 512, and 1024-bit and the rounds count is

not user-definable.

The construction proposes HKDF(SHA2) and cSHAKE hash functions for the key schedule.

Any other choice will throw an exception.

Regarding the block cipher round the proposal should include other options, indeed, in the

unlikely event that a weakness is found on the AES structure in the future, it might be

AES Round

input

128 bits

Roundkey 0 128

AES RoundRoundkey n 128

output

key

k bits

HKDF -SHA256
Only expansion phase

Rnb =
Min{k/(8*4)+14,38}

Execute Rnb/2
HMAC-SHA2

...

AHX-Preliminary Security Analysis – itk AVtobvS Sàrl

29.04.2019 10 © 2019 Nagravision SA / All rights reserved

possible to have it whatever the key size and the key schedule used. The developer has also

proposed the SHX block cipher, based on Serpent, to address these concerns.

2.2. Key

Regarding the key element and according to security level expected, a specific attention

must be paid to the quality of the random number generator used to guarantee the expected

entropy of the key.

The storage of the keys must manage them in way that it will guarantee confidentiality and

integrity. The confidentiality is partially addressed by the fact that the cipher key can be

stored in either a SymmetricKey or SymmetricSecureKey structure. The

SymmetricSecureKey stores all data in encrypted arrays, either type of key structure can be

used with the ISymmetricKey interface used by the Initialize function.

However, what is the source of the key used to do this operation and where it is stored is not

known from the files reviewed.

In the analyzed files, the enforcement of the key size in bits is covered and using an
unsupported key size will throw an exception.

2.3. Input Block size

A block cipher input block size should be such that no complete dictionary can be built for a

given key. Nowadays it is quite common to set the block size to 128 bits, which is considered

to completely protect from such brute force attacks.

Moreover, if we consider the input/output size of the block cipher, there are (2128)! possible

permutations. Whatever the key lengths considered 256, 512 or 1024 bits this is much larger

than the key spaces, so collisions are not expected.

However, some academic results have alerted that it might not be enough to just double the

key length of the symmetric primitives to block the attackers from the post-quantum world [8].

And given that the AHX is proposed to handle 512-bit security level, considering quantum

resistance, the block size bit length should also be taken into account and solution to handle

larger block size should be investigated. The developer mentions that the proposed solution

is meant to be an intermediate drop-in replacement for AES. Larger block sizes are available

in the CEX library but they implementation is not in the scope of this report. They are the

Threefish and ChaCha20 algorithms. However, they do not fit one of the requirements of the

proposal that is to use already existing hardware or software implementation.

The original Rijndael proposal already specifies the possible choice of 256-bit block size,

possibility that has not been retained for the AES standard.

In the AHX proposal, the 256-bit block was removed as it would have required to generate

twice as many round subkeys, and because of the weak diffusion characteristics of the

expansion function. The 256-bit rounds function with its wider block and altered row-column

shuffle, was also thought to be possibly introducing algebraic differences which might be

exploited in some future attacks.

AHX-Preliminary Security Analysis – itk AVtobvS Sàrl

29.04.2019 11 © 2019 Nagravision SA / All rights reserved

Nevertheless, we argue that the choice to switch to 256 bits block size should be available,

although a thorough analysis of attack scenarios should be produced to justify it.

2.4. Key schedule

It appears important here to recall security breach published on AES 256 bits key. Indeed, it

has been proved by researchers that AES-192 and AES-256 are weaker than AES-128

against some classes of attacks [6].

This can be explained at very high level by the fact that AES-256 tries to squeeze two times

the key information into a construction that was essentially built for 128-bit keys, and this has

serious side effects.

The attacks are related-key and related subkey attacks [19] which requires the cryptanalyst

to have access to plaintexts encrypted with multiple keys that are related in a specific way -a

scenario which is debatable. They are also very far to be practical.

However, this work casts serious doubts on the possibility to extend the AES to bigger key

sizes, at least on theoretical grounds without changing its key schedule to match bigger key

sizes.

This is precisely the motivation behind the proposal of the second AHX schedule, namely the

one based on either cSHAKE or HKDF; the related key attack scenario is certainly not

applicable to the second proposed AHX key schedule. In this case round keys are derived

with a one-way cryptographic function, which has higher computational cost, but certainly

renders the proposal more attractive.

HKDF is well known and studied. If the hash function is correctly chosen and implemented, it

enables to produce many more round-keys keeping maximal entropy for each round key.

The choice of the KDF used to generate the round keys essentially determines the upper

bound on the security of the scheme. The HKDF is built on HMAC primitive, which in turn is

based on a hash function.

Regarding cSHAKE based variants they rely on the pseudorandom property provided by

Spongent construction that has also been deeply analyzed.

We remind here that the options are:

• HKDF(SHA2-256)

• HKDF(SHA2-512)

• cSHAKE-256

• cSHAKE-512

• and an experimental cSHAKE-1024

The choice poses constraint on the actual key space of AHX.

SHA2-256 and cSHAKE256 have claimed security of 256 bits against pre-image attacks

(collision attacks are not meaningful in the KDF scenario) [Note that cSHAKE256 should be

used in this case with at least 512-bit output].

This is coherent with the fact that the main key can be up to 512 bits long; in fact, Grover's

algorithm [9] run on a quantum computer, would break such keys with a 2256 effort, which is

AHX-Preliminary Security Analysis – itk AVtobvS Sàrl

29.04.2019 12 © 2019 Nagravision SA / All rights reserved

a value coherent with the choice of either SHA2-256 or cSHAKE256. Additionally, the

Boolean Equation Solving break [20] proposes that AES-256 could be broken in 274.

Therefore, such choice is possible if the key of AHX is no longer than 512 bits.

For longer keys, one could choose either SHA2-512 or SHAKE512, but knowing that for the

same motivations outlined above, in this case the key space of AHX cannot exceed 1024

bits.

Thus, in the context of quantum computers and considering an attacker could exploit one

round key leakage to get the original key using pre-image attack, we consider that the

proposal is consistent as it recommends the following:

• SHA256-cSHAKE256 for key up to 512 bits to guarantee a security level up to 256
bits

• SHA512-cSHAKE512 for key up to 1024 bits to guarantee a security level up to 512
bits

We think it would be desirable to limit AHX key length to 1024 bits and which is for the

moment the case in the proposal.

It is important to mention that the one-way property of the second proposed key-schedule is

an asset to protect the implementation against attacks; an attacker would need to get all the

round-keys to break the full encryption function (if the original key is well protected and does

not leak during first HMAC or Spongent function execution. This could be verified by side-

channel leakage analysis of a physical implementation).

2.5. Rounds number

Examining AHX code, the round count number is implicitly determined by the key length, and

via the KDF a different key length would in any case lead to different KDF output. We think

that a more desirable method would be to let the number of rounds enter the KDF function as

ancillary data. This would enforce the security in context of attack.

The formula for choosing rounds number is justified by the authors as based on the original

Rijndael design:

𝐾𝑤 =
𝑘𝑒𝑦 𝑏𝑦𝑡𝑒 𝑠𝑖𝑧𝑒

4
 and 𝑁𝑅 = 𝐾𝑤 + 6

which is 22 rounds for a 512-bit key.

However, because 11 rounds have been broken by a related subkey attack, the authors [23]

believe that 22 rounds or 2n the best attack should be the minimum and is applied to the

256-bit key instead. The 512-bit key uses an intermediate 30 rounds, and the 1024-bit key

uses 38, which matches the original formula.

The amount of (round) key bits that can be introduced into a round of AES is 128. If the AES

standard proposed 10 rounds for 128-bit keys, we would conservatively assume that AES

with 256-bit keys should feature 20 rounds which catches up with applying the principle of 2n

the best attack: 22 rounds for AES-256. That is aligned with the proposal.

AHX-Preliminary Security Analysis – itk AVtobvS Sàrl

29.04.2019 13 © 2019 Nagravision SA / All rights reserved

If we conservatively keep the same principle for 512-bit key, assuming that 10 rounds would

be needed for every 128 bits of key material, this would mean 40 rounds for 512-bit keys. It is

important to mention here that in context of hardware implementation one AES round costs

few clock cycles and in case of software implementation, the key schedule will be the most

impacting part.

The formulas chosen by the AHX author are less conservative, as they prescribe 30 rounds

for 512-bit keys using the KDF key schedule.

Deeper analysis should be conducted for 1024-bit key proposal.

2.6. Implementations

The AHX cipher can be implemented in software and dedicated hardware (ASIC and/or

FPGA). It is based on well-known cryptographic primitives, and from a functional point of

view should not pose problems for a skilled coder/designer.

According to the context, we want to mention that implementations should be secure against

active (fault) and passive (side-channel) physical attacks (exploiting for example cache

and/or timing differences).

The developer commented this as follows: “the permutation functions in both the Keccak and

SHA2 implementations are by default unrolled (as is every permutation function in the library

including Blake2, Skein, Threefish, ChaCha etc.). Both an unrolled and a compact form of

the permutations are available and can be set per the definition of the

CEX_DIGEST_COMPACT and CEX_CIPHER_COMPACT contained in CexConfig.h. The

SHA2.h class also contains the SHA2-NI instructions which are selected automatically at run-

time if available on the host CPU”.

While techniques for doing that are quite known in the literature, especially for software

implementations, the addition of more cryptographic primitives (KDF, HMAC, hash functions

and spongent function) that manipulate key material means that every one of these primitives

should be secured against such attacks, making the complexity and therefore the cost of the

implementation higher.

In addition, for pure software implementation specific attention must be paid to keys, round

keys storage and entropy generation. According to the developer, the source of entropy is

also mentioned, the default is ACP (Auto entropy Collection Provider) which uses a collection

provided by the collection and concentration of every available entropy provider (RDRAND,

RDSEED, CPU Jitter, and the system provider) along with hundreds of operating system

timers and system unique values, all concentrated through cSHAKE (the strongest entropy

provider found was selected, and improved to make it a lot stronger).

It is certainly possible to implement the AHX block cipher with KDF key schedule in a

dedicated chip (ASIC) and programmable logic (FPGA). It would require deeper analysis

regarding memory constraints, performances requirements and physical attacks of the whole

cryptographic construction.

AHX-Preliminary Security Analysis – itk AVtobvS Sàrl

29.04.2019 14 © 2019 Nagravision SA / All rights reserved

2.7. Additional Comments

The source code has been updated during the redaction of this report and is now available at

the following links, with the revision 1.0.0.7c commited on December 13th 2018:

• https://github.com/Steppenwolfe65/CEX/tree/master/CEX/AHX.cpp v1.007c

• https://github.com/Steppenwolfe65/CEX/blob/master/CEX/AHX.h v1.007

• https://github.com/Steppenwolfe65/CEX/blob/master/CEX/HKDF.cpp v1.006f

• https://github.com/Steppenwolfe65/CEX/blob/master/CEX/HMAC.cpp v1.006f

DOCUMENT HISTORY
Version Status Date Authors Comments

01.05 Final 29.04.2019 M. Macchetti, K. Villegas Approved version

Reviewer Position Date Document Version

Benoit Gerhard Head of Security Evaluation & Attacks 29.04.2019 01.05

Approver Position Date Document Version

Benoit Gerhard Head of Security Evaluation & Attacks 29.04.2019 01.05

DOCUMENT RECIPIENTS
Name Position Contact Information

Stiepan A. Kovac stie@itk.swiss

KUDELSKI SECURITY CONTACTS
Name Position Contact Information

Benoît Gerhard benoit.gerhard@nagra.com

https://github.com/Steppenwolfe65/CEX/tree/master/CEX/AHX.cpp
https://github.com/Steppenwolfe65/CEX/blob/master/CEX/AHX.h
https://github.com/Steppenwolfe65/CEX/blob/master/CEX/HKDF.cpp
https://github.com/Steppenwolfe65/CEX/blob/master/CEX/HMAC.cpp
mailto:stie@itk.swiss
mailto:benoit.gerhard@nagra.com

AHX-Preliminary Security Analysis – itk AVtobvS Sàrl

29.04.2019 15 © 2019 Nagravision SA / All rights reserved

REFERENCES

References Descriptions

[1] https://github.com/Steppenwolfe65/CEX/tree/master/CEX

[2]
https://tools.ietf.org/pdf/rfc5869.pdf
HMAC-based Extract-and-Expand Key Derivation Function (HKDF)

[3] https://csrc.nist.gov/projects/post-quantum-cryptography

[4]
D. J. Bernstein (2009). “Introduction to post-quantum cryptography”. (Introductory chapter to
book “Post-quantum cryptography”).

[5]
D.J. Bernstein, Cost analysis of hash collisions: Will quantum computers make SHARCS
obsolete?, 2009

[6]
A. Biryukov and D. Khovratovich, Related-key Cryptanalysis of the Full AES-192 and AES-256,
2009

[7]
Joan Daemen and Vincent Rijmen, The Design of Rijndael, AES – The Advanced Encryption
Standard, Springer-Verlag 2002 (238 pp.)

[8]
Xiaoyang Dong, Bingyou Dong, Xiaoyun Wang,Quantum Attacks on Some Feistel Block Ciphers,
Journal of latex class files, VOL. 14, NO. 8, 2015

[9]
Grover L.K.: A fast quantum mechanical algorithm for database search, Proceedings, 28th
Annual ACM Symposium on the Theory of Computing, (May 1996) p. 212

[10]
Grover L.K.: From Schrödinger’s equation to quantum search algorithm, American Journal of
Physics, 69(7): 769-777, 2001. Pedagogical review of the algorithm and its history.

[11]
Grover L.K.: QUANTUM COMPUTING: How the weird logic of the subatomic world could make
it possible for machines to calculate millions of times faster than they do today The Sciences,
July/August 1999, pp. 24–30.

[12]
Grover L.K, Quantum mechanics helps in searching for a needle in a haystack, Physical Review
Letters 79 (1997), 325–328.

[13]
Grover L.K, Terry Rudolph, How significant are the known collision and element distinctness
quantum algorithms ? Quantum Information & Computation 4 (2003), 201–206. MR
2005c:81037. URL: http://arxiv.org/abs/quant-ph/0309123

[14]
Peter W. Shor, Algorithms for quantum computation: discrete logarithms and factoring., in [7]
(1994), 124–134.

[15]
Peter W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer, SIAM Journal on Computing 26, 1997

[16]
Paul C. van Oorschot, Michael Wiener, Parallel collision search with application to hash
functions and discrete logarithms, in [2] (1994), 210–218

[17]
Paul C. van Oorschot, Michael Wiener, Parallel collision search with cryptanalytic applications,
Journal of Cryptology 12 (1999), 1–28

[18]
John Underhill, CEX++ 1.0- An Introduction to the CEX Cryptographic Library,
john.underhill@protonmail.com, July 03, 2017

[19] https://eprint.iacr.org/2009/374.pdf Section 4.2

[20] https://arxiv.org/pdf/1712.06239.pdf

[21] https://www.schneier.com/blog/archives/2009/07/another_new_aes.html

[22] https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf

[23]
John Gregory Underhill1 and Stiepan Aurélien Kovac2, and Xenia Bogomolec, Towards post-
quantum symmetric cryptography 2018

Table 4: References

https://github.com/Steppenwolfe65/CEX/tree/master/CEX
https://tools.ietf.org/pdf/rfc5869.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography
https://en.wikipedia.org/wiki/Daniel_J._Bernstein
http://www.pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
http://arxiv.org/abs/quant-ph/0309123
https://eprint.iacr.org/2009/374.pdf%20Section%204.2
https://www.schneier.com/blog/archives/2009/07/another_new_aes.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf

