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EXECUTIVE SUMMARY 

In a context where the amount of research on quantum computers is increasing, threats for 

classical cryptography appears. 

For asymmetric cryptography and due to the efficiency of Shor's algorithm [15], NIST has 

launched a challenge to solicit, evaluate, and standardize one or more quantum-resistant 

public-key cryptographic algorithms. 

Due to the quantum Grover’s algorithm for hash functions with 𝑛 bits input, the preimage 

resistance is reduced to 2
𝑛

2  ([12], [13]). It has the same impact on the key search [9], in case 

of symmetric block ciphers, thus doubling the key size can effectively enable to maintain 

security level.  

The purpose of the AHX would be to offer a solution for embedded devices in the context of 

5G and resistance to attacks possible on quantum computers. 

It has been requested by itk AVtobvS Sàrl to Kudelski to provide some feedback regarding 

the security of the current proposal, that is the main goal of this report and it is not a code 

review. 
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INTRODUCTION 

The first high level security analysis presented in this report is focused on the block cipher 

called AHX. 

This report analysis (and also rev 1.02) has been conducted using only the source codes 

available on following links, with the revision 1.0.06g and which corresponds to what was 

delivered to Kudelski: 

• https://github.com/Steppenwolfe65/CEX/tree/master/CEX/AHX.cpp v1.006f 

• https://github.com/Steppenwolfe65/CEX/blob/master/CEX/AHX.h v1.006d 

• https://github.com/Steppenwolfe65/CEX/blob/master/CEX/HKDF.cpp v1.006f 

• https://github.com/Steppenwolfe65/CEX/blob/master/CEX/HMAC.cpp v1.006f 

Others files might have been taken into account but due to short time constraint, it has not 

been possible. 

Note that another similar block cipher proposal can be found in the CEX crypto library: SHX 

which is based on the Serpent block cipher. The difference is the underlying block cipher. 

AHX could beconsidered as the most interesting of such instances, because optimized 

hardware and processors are generally available for the AES block cipher. 

1. AHX OVERVIEW 

1.1. High level proposition 

AHX seems to have a flexible design to enable the user to handle the required security level 

according to the context. 

Key lengths from 128 to 1024 bits are handled. The supported key sizes in extended mode 

are fixed at 256, 512, and an experimental 1024-bit. 

The key schedule generator options are limited to HKDF(SHA2-256/512) or cSHAKE-

256/512/1024. This is set through the constructors BlockCipherExtension parameter. The 

cipher can process 128, 192, 256-bit and 512 bits keys in standard mode, and 256, 512, and 

1024-bit keys in extended mode. There are no other legal key sizes, and using an 

unsupported key size will throw an exception. 

The selection of the security level is linked to time, so the following question should be 

answered before the cryptographic primitives’ selection: how long shall the data be safe? 

One goal of this analysis will be to give first elements regarding the targeted security level. 

In Figure 1 we have summarized the proposal. 

https://github.com/Steppenwolfe65/CEX/tree/master/CEX/AHX.cpp
https://github.com/Steppenwolfe65/CEX/blob/master/CEX/AHX.h
https://github.com/Steppenwolfe65/CEX/blob/master/CEX/HKDF.cpp
https://github.com/Steppenwolfe65/CEX/blob/master/CEX/HMAC.cpp
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Figure 1: Security levels targeted according to algorithms 

 

1.2. AHX Key schedule 

AHX can use two different key schedules.  

The first one is the standard AES key schedule, which is originally specified for AES for 128, 

192 and 256-bit keys. AHX extends it to be able to process 512-bit keys. The length of the 

key determines the number of rounds (and round keys); given 𝑘 ≤ 512 the number of key 

bits, the number of rounds is given by 𝑅𝑛𝑏 =  
𝑘

32
+ 6. 

The second key schedule which is called Secure Expand is based on a key derivation 

mechanism that can be either HKDF based on HMAC with following hash primitives SHA2-

256 or SHA2-512, or cSHAKE-256 or cSHAKE512 [22] which are based on Keccak 

permutation. In this key schedule context, the round keys are generated by calling iteratively 

the key derivation until all needed bytes are generated. The number of rounds in this case is 

given by  𝑅𝑛𝑏 = 𝑀𝑖𝑛 {
𝑘

32
+ 14, 38}. 

 

Key length (in bits) 
Hash function in the key 

schedule 

256 SHA256 

512 SHA256 

1024 SHA512 

Table 1: Hash functions used in the HKDF extended key schedule according to key length 

Security level in context  of 
Post Quantum computer

?128 bits 512 bits

AES 256 bits
AHX 256 bits

AHX 1024 bits

Security level in context of 
classical computer

?128 bits 256 bits

AES 128 bits
AES 256 bits
AHX 256 bits

Security level 

?

256 bits

AHX 512 bits
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Key length (in bits) 
Hash function in the key 

schedule 

256 cSHAKE256 

512 cSHAKE256 

1024 cSHAKE512 

Table 2: Spongent functions in the extended key schedule according to key length 

 

1.3. AHX Block cipher 

AHX block cipher round is fully equivalent to AES one. 

As defined in the key schedule based on HKDF, the number of rounds is defined according 

to the input key size.  

Given 𝑘 ≤ 1024 the number of key bits: 𝑅𝑛𝑏 = 𝑀𝑖𝑛 {
𝑘

32
+ 14, 38}. 

Key length (in bits) Rounds numbers 

256 22 

512 30 

1024 38 

Table 3: Round numbers according to key length 

Figure 2 below shows an overview of the AHX execution when using the HKDF-based key 

schedule with SHA256 underlying hash function and for key length that should not exceed 

512 bits. 
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Figure 2: AHX global scheme 

2. SECURITY ANALYSIS 

In Figure 2 we have pointed in red the elements that must be handled carefully to guarantee 

the security level of the whole algorithm. 

2.1. Consistency of the primitives 

In the analyzed library CEX, it is proposed to manage the security consistency of the 

cryptographic primitives by the LegalKeySize() function in the code. The rounds are fixed at 

22, 30, and 38, corresponding to key sizes 256, 512, and 1024-bit and the rounds count is 

not user-definable. 

The construction proposes HKDF(SHA2) and cSHAKE hash functions for the key schedule. 

Any other choice will throw an exception. 

Regarding the block cipher round the proposal should include other options, indeed, in the 

unlikely event that a weakness is found on the AES structure in the future, it might be 

AES Round

input

128 bits

Roundkey 0 128

AES RoundRoundkey n 128

output

key

k bits

HKDF -SHA256
Only expansion phase

Rnb =
Min{k/(8*4)+14,38}

Execute Rnb/2 
HMAC-SHA2

...
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possible to have it whatever the key size and the key schedule used. The developer has also 

proposed the SHX block cipher, based on Serpent, to address these concerns. 

2.2. Key 

Regarding the key element and according to security level expected, a specific attention 

must be paid to the quality of the random number generator used to guarantee the expected 

entropy of the key. 

The storage of the keys must manage them in way that it will guarantee confidentiality and 

integrity. The confidentiality is partially addressed by the fact that the cipher key can be 

stored in either a SymmetricKey or SymmetricSecureKey structure. The 

SymmetricSecureKey stores all data in encrypted arrays, either type of key structure can be 

used with the ISymmetricKey interface used by the Initialize function. 

However, what is the source of the key used to do this operation and where it is stored is not 

known from the files reviewed. 

In the analyzed files, the enforcement of the key size in bits is covered and using an 
unsupported key size will throw an exception. 

2.3. Input Block size 

A block cipher input block size should be such that no complete dictionary can be built for a 

given key. Nowadays it is quite common to set the block size to 128 bits, which is considered 

to completely protect from such brute force attacks. 

Moreover, if we consider the input/output size of the block cipher, there are (2128)! possible 

permutations. Whatever the key lengths considered 256, 512 or 1024 bits this is much larger 

than the key spaces, so collisions are not expected. 

However, some academic results have alerted that it might not be enough to just double the 

key length of the symmetric primitives to block the attackers from the post-quantum world [8]. 

And given that the AHX is proposed to handle 512-bit security level, considering quantum 

resistance, the block size bit length should also be taken into account and solution to handle 

larger block size should be investigated. The developer mentions that the proposed solution 

is meant to be an intermediate drop-in replacement for AES. Larger block sizes are available 

in the CEX library but they implementation is not in the scope of this report. They are the 

Threefish and ChaCha20 algorithms. However, they do not fit one of the requirements of the 

proposal that is to use already existing hardware or software implementation.  

The original Rijndael proposal already specifies the possible choice of 256-bit block size, 

possibility that has not been retained for the AES standard. 

In the AHX proposal, the 256-bit block was removed as it would have required to generate 

twice as many round subkeys, and because of the weak diffusion characteristics of the 

expansion function. The 256-bit rounds function with its wider block and altered row-column 

shuffle, was also thought to be possibly introducing algebraic differences which might be 

exploited in some future attacks. 
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Nevertheless, we argue that the choice to switch to 256 bits block size should be available, 

although a thorough analysis of attack scenarios should be produced to justify it. 

2.4. Key schedule 

It appears important here to recall security breach published on AES 256 bits key. Indeed, it 

has been proved by researchers that AES-192 and AES-256 are weaker than AES-128 

against some classes of attacks [6]. 

This can be explained at very high level by the fact that AES-256 tries to squeeze two times 

the key information into a construction that was essentially built for 128-bit keys, and this has 

serious side effects. 

The attacks are related-key and related subkey attacks [19] which requires the cryptanalyst 

to have access to plaintexts encrypted with multiple keys that are related in a specific way -a 

scenario which is debatable. They are also very far to be practical. 

However, this work casts serious doubts on the possibility to extend the AES to bigger key 

sizes, at least on theoretical grounds without changing its key schedule to match bigger key 

sizes.  

This is precisely the motivation behind the proposal of the second AHX schedule, namely the 

one based on either cSHAKE or HKDF; the related key attack scenario is certainly not 

applicable to the second proposed AHX key schedule. In this case round keys are derived 

with a one-way cryptographic function, which has higher computational cost, but certainly 

renders the proposal more attractive. 

HKDF is well known and studied. If the hash function is correctly chosen and implemented, it 

enables to produce many more round-keys keeping maximal entropy for each round key. 

The choice of the KDF used to generate the round keys essentially determines the upper 

bound on the security of the scheme. The HKDF is built on HMAC primitive, which in turn is 

based on a hash function. 

 

Regarding cSHAKE based variants they rely on the pseudorandom property provided by 

Spongent construction that has also been deeply analyzed. 

We remind here that the options are: 

• HKDF(SHA2-256) 

• HKDF(SHA2-512) 

• cSHAKE-256 

• cSHAKE-512 

• and an experimental cSHAKE-1024 

The choice poses constraint on the actual key space of AHX.  

SHA2-256 and cSHAKE256 have claimed security of 256 bits against pre-image attacks 

(collision attacks are not meaningful in the KDF scenario) [Note that cSHAKE256 should be 

used in this case with at least 512-bit output]. 

 

This is coherent with the fact that the main key can be up to 512 bits long; in fact, Grover's 

algorithm [9] run on a quantum computer, would break such keys with a 2256 effort, which is 
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a value coherent with the choice of either SHA2-256 or cSHAKE256. Additionally, the 

Boolean Equation Solving break [20] proposes that AES-256 could be broken in 274. 

Therefore, such choice is possible if the key of AHX is no longer than 512 bits. 

For longer keys, one could choose either SHA2-512 or SHAKE512, but knowing that for the 

same motivations outlined above, in this case the key space of AHX cannot exceed 1024 

bits. 

Thus, in the context of quantum computers and considering an attacker could exploit one 

round key leakage to get the original key using pre-image attack, we consider that the 

proposal is consistent as it recommends the following: 

 

• SHA256-cSHAKE256 for key up to 512 bits to guarantee a security level up to 256 
bits 

• SHA512-cSHAKE512 for key up to 1024 bits to guarantee a security level up to 512 
bits 
 

We think it would be desirable to limit AHX key length to 1024 bits and which is for the 

moment the case in the proposal. 

It is important to mention that the one-way property of the second proposed key-schedule is 

an asset to protect the implementation against attacks; an attacker would need to get all the 

round-keys to break the full encryption function (if the original key is well protected and does 

not leak during first HMAC or Spongent function execution. This could be verified by side-

channel leakage analysis of a physical implementation). 

2.5. Rounds number 

Examining AHX code, the round count number is implicitly determined by the key length, and 

via the KDF a different key length would in any case lead to different KDF output. We think 

that a more desirable method would be to let the number of rounds enter the KDF function as 

ancillary data. This would enforce the security in context of attack. 

The formula for choosing rounds number is justified by the authors as based on the original 

Rijndael design: 

𝐾𝑤 =
𝑘𝑒𝑦 𝑏𝑦𝑡𝑒 𝑠𝑖𝑧𝑒

4
 and 𝑁𝑅 = 𝐾𝑤 + 6 

which is 22 rounds for a 512-bit key.  

However, because 11 rounds have been broken by a related subkey attack, the authors [23] 

believe that 22 rounds or 2n the best attack should be the minimum and is applied to the 

256-bit key instead. The 512-bit key uses an intermediate 30 rounds, and the 1024-bit key 

uses 38, which matches the original formula.  

The amount of (round) key bits that can be introduced into a round of AES is 128. If the AES 

standard proposed 10 rounds for 128-bit keys, we would conservatively assume that AES 

with 256-bit keys should feature 20 rounds which catches up with applying the principle of 2n 

the best attack: 22 rounds for AES-256. That is aligned with the proposal.  
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If we conservatively keep the same principle for 512-bit key, assuming that 10 rounds would 

be needed for every 128 bits of key material, this would mean 40 rounds for 512-bit keys. It is 

important to mention here that in context of hardware implementation one AES round costs 

few clock cycles and in case of software implementation, the key schedule will be the most 

impacting part. 

The formulas chosen by the AHX author are less conservative, as they prescribe 30 rounds 

for 512-bit keys using the KDF key schedule. 

Deeper analysis should be conducted for 1024-bit key proposal. 

2.6. Implementations 

The AHX cipher can be implemented in software and dedicated hardware (ASIC and/or 

FPGA). It is based on well-known cryptographic primitives, and from a functional point of 

view should not pose problems for a skilled coder/designer. 

According to the context, we want to mention that implementations should be secure against 

active (fault) and passive (side-channel) physical attacks (exploiting for example cache 

and/or timing differences).  

 

The developer commented this as follows: “the permutation functions in both the Keccak and 

SHA2 implementations are by default unrolled (as is every permutation function in the library 

including Blake2, Skein, Threefish, ChaCha etc.). Both an unrolled and a compact form of 

the permutations are available and can be set per the definition of the 

CEX_DIGEST_COMPACT and CEX_CIPHER_COMPACT contained in CexConfig.h. The 

SHA2.h class also contains the SHA2-NI instructions which are selected automatically at run-

time if available on the host CPU”. 

 

While techniques for doing that are quite known in the literature, especially for software 

implementations, the addition of more cryptographic primitives (KDF, HMAC, hash functions 

and spongent function) that manipulate key material means that every one of these primitives 

should be secured against such attacks, making the complexity and therefore the cost of the 

implementation higher. 

In addition, for pure software implementation specific attention must be paid to keys, round 

keys storage and entropy generation. According to the developer, the source of entropy is 

also mentioned, the default is ACP (Auto entropy Collection Provider) which uses a collection 

provided by the collection and concentration of every available entropy provider (RDRAND, 

RDSEED, CPU Jitter, and the system provider) along with hundreds of operating system 

timers and system unique values, all concentrated through cSHAKE (the strongest entropy 

provider found was selected, and improved to make it a lot stronger). 

It is certainly possible to implement the AHX block cipher with KDF key schedule in a 

dedicated chip (ASIC) and programmable logic (FPGA). It would require deeper analysis 

regarding memory constraints, performances requirements and physical attacks of the whole 

cryptographic construction. 
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2.7. Additional Comments 

 

The source code has been updated during the redaction of this report and is now available at 

the following links, with the revision 1.0.0.7c commited on December 13th 2018: 

• https://github.com/Steppenwolfe65/CEX/tree/master/CEX/AHX.cpp v1.007c 

• https://github.com/Steppenwolfe65/CEX/blob/master/CEX/AHX.h v1.007 

• https://github.com/Steppenwolfe65/CEX/blob/master/CEX/HKDF.cpp v1.006f 

• https://github.com/Steppenwolfe65/CEX/blob/master/CEX/HMAC.cpp v1.006f 
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