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Abstract. With this work, we intend on demonstrating the need for
improvements to the currently standardized AES family of cryptosystems, and
provide a solution that meets the requirements of long-term security in the
rapidly evolving threat landscape. The solution proposed is flexible,
dramatically increases the potential security of the cipher, and strongly
mitigates many of the most serious attacks on the AES family of cryptosystems.
Further, our solution can be easily integrated into existing AES cryptosystem
deployments, with only a few small changes required, thus preserving the large
investments in this cipher both in hardware and software.
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State of the art

AES

The Advanced Encryption Standard (AES) is a specification for the encryption of
electronic data. The AES selection competition was held in 1998 by the National
Institute of Science and Technology (NIST), which after a period of study from the
academic community, a subset of the Rijndael family of symmetric ciphers was
selected as the AES competition winner.

In 2001 the adoption of AES as a replacement for the DES family of ciphers, was
formally proposed with the release of the FIPS document FIPS PUB 197 [1].
Subsequently, the AES family of cryptosystems has been adopted by countries around
the world, and has been near universally implemented, and is now the most widely
used and critically important symmetric encryption scheme in use today.

AES is in fact, implemented on most of the computers in the world, and is the
backbone of the worlds secure communications systems, not only as the primary
encryption cipher used by e-commerce and secure communications applications, but
also in the many and various diverse use case scenarios such as VPN technology, disk
drive encryption, and secure databases.

It is for this reason, that this technology must be kept secure against future threats,
for if a serious break in AES were ever discovered, the result would be nothing short
of catastrophic, and result in the total and absolute compromise of the worlds secure
communications infrastructure.
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1.2 The need for change

In cryptography we adjust a ciphers strength according to what we consider to be its
resistance to attack. For example, if we know that 64 bits of key can be broken, we set
the key length to be at least 2n, or 3n that size. If we know that 10 rounds of a rounds-
based iterative block cipher can be broken, we set that cipher to twenty or even thirty
rounds. This is an assurance we provide that the technology is well beyond the current
and expected future technological capabilities required to break that cipher.

Rijndael was not chosen for its security properties, but largely for reasons of its
superior performance. Other leading candidates; Serpent and Twofish each scored
significantly higher in their security evaluations, with it estimated that Rijndael
variants would require being set at between 18 to 24 rounds only to equal the
estimated security of the Twofish family of ciphers [2] (rather than the 10 to 14
rounds defined by NIST), and Twofish was in turn considered to be significantly less
secure than the Serpent cipher.

The last prolonged and intensive public study made of Rijndael was during the AES
standardization competition, and that was nearly 20 years ago. Since that time, many
advances in cryptanalysis and computing technology have been made, the rate of
technological progress has accelerated, and the immediate future promises to provide
changes to our technological capabilities that far exceed what was even considered
possible just a few years ago.

Since the AES selection process, many new forms of attack have been discovered and
others greatly improved upon; some side-channel attacks that target subtle variations
in a cipher’s execution timing, have been proven capable of breaking AES under real
world conditions [3][4][5]. Other attacks that target the differentially-weak key
schedule [6][7], particularly in AES-256, have also raised serious questions about the
suitability of AES in a long-term security context.

The authors of one of these related subkey attacks, which has to date broken 8 out of
10 rounds of AES-128 and 11 of 14 rounds of AES-256, pose the question of the
currently understood AES safety margins [7]:

“While neither AES-128 nor AES-256 can be directly broken by these attacks, the fact
that their hybrid (which combines the smaller number of rounds from AES-128 along
with the larger key size from AES-256) can be broken with such a low complexity
raises serious concern about the remaining safety margin offered by the AES family of
cryptosystems.”

Though these attacks are currently not known to be able to break a full 10, 12, or 14
round version of AES, they do prove two things conclusively: that the weak internal
key expansion function is a serious and exploitable flaw in the cipher design, and that
the number of mixing rounds is set too low.

Bruce Schneier has made public comments to this effect, repeatedly urging the
community to consider increasing the number of rounds, and acknowledging this
serious flaw in the ciphers design [8]:

“Cryptography is all about safety margins. If you can break n round of a cipher, you
design it with 2n or 3n rounds. What we're learning is that the safety margin of AES is
much less than previously believed. And while there is no reason to scrap AES in
favor of another algorithm, NIST should increase the number of rounds of all three



AES variants. At this point, I suggest AES-128 at 16 rounds, AES-192 at 20 rounds,
and AES-256 at 28 rounds. Or maybe even more; we don't want to be revising the
standard again and again.”

It must also be considered, that these are only the attacks that have been discovered in
the academic community and as such are publicly known. For example, the NSA
likely spends more on cryptanalysis than all of the universities in the world combined,
they employ many of the best cryptanalysts, cryptologists, mathematicians and
engineers in the world, and have been actively engaged in trying to break AES for
nearly twenty years.

Quantum computers are now a reality. Engineering problems are being solved,
working prototypes are being built, and their capabilities are rapidly improving. Many
of the largest companies in the technology sector are now investing billions of dollars
into these emerging technologies, along with state agencies from the most powerful
countries in the world.

Some estimates are that these machines may be able to break the most widely used
asymmetric ciphers in as little as five years [9].

They pose a threat to symmetric ciphers as well, with the potential to halve the key
space, making the 128-bit version of AES effectively obsolete.

A new paper proposes a quantum algebraic attack against AES using Boolean
equation solving [10] estimates that even greater reductions to the key space may be
possible.

A lesson we have learned time and again, is that attacks only improve, and new
attacks against symmetric cryptography using quantum computers will almost
certainly be discovered once these computers and their properties are better
understood.

Lastly, we must consider what we can not predict, the unknown unknowns. Some
experts believe that we are within twenty years of the technological singularity; the
point at which we create an independent machine consciousness more powerful than
our own. Beyond this point, it will quickly become impossible to predict the future
evolution of our technological capabilities, for by its very definition, we will have
created an alien intelligence, which by the end of the century could evolve to become
many orders of magnitude more powerful than human consciousness.

The definition of long-term security has changed in the last ten years. Historically,
for data to be considered secure it only required that it should remain unreadable for
so long as that information was relevant, typically ten to twenty years.

A great deal of evidence has been accumulating that strongly indicates that state
sponsored intelligence agencies have become engaged in the collection and long-term
storage of much of the worlds secure communications traffic. In parallel, laws that
cater for the evolution of genetic medicine, ask for lifetime data protection, such as
Germany's patient data protection law (“even after death of the patient”), setting a
precedent in this domain to the European Union's GDPR, that now sees global effects.

It is in response to this change in the threat landscape, that we must in turn create
and adopt more powerful and flexible encryption technology, to ensure that data is not
protected only for the foreseeable future, but beyond what can be estimated or
predicted given our current knowledge. We must now answer this present and
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evolving threat, and attempt to ensure that sensitive information can be kept secure
for an entire lifetime.

The rules of the game

Nearly twenty years after the standardization of AES; created as a replacement for the
then popular DES family of ciphers, we can still find DES in widespread use. DES
and the strengthened version of the cipher, Triple DES, are still widely used in the
electronic payment industry, various software applications, aging TLS configurations
and VPNs [11] and integrated into popular browser software.

This failure to update our systems and software to the currently held stronger
standards of encryption technology is well understood, and supported by historical
trends in the software industry.

The standardization process for a replacement for AES, if judging by past
standardization efforts, (including the NIST Post Quantum asymmetric call, which
could take three to five years to complete), could take as long as five years.

The actual changeover to a new symmetric cryptosystem given that AES is near
universally implemented, and integrated into every level of our communications
systems and encryption software componentry, could take another twenty years to be
realized on such a massive scale.

Clearly this is completely unacceptable, particularly given the ample evidence that

state agencies have begun harvesting the worlds secure communications traffic and
can store that data indefinitely for future analysis.
There is more than sufficient cause to believe that AES is not as secure as we once
believed it to be, and that given the massive investments into cryptanalysis by state
funded agencies, and that breaking the AES cryptosystem represents the most
fundamentally important target of their efforts, it becomes clear that improvements to
the AES design that counter known weaknesses and provide greater security is
becoming of paramount importance.

A simple formula demonstrates this:
xty<=z

If x, the number of years we require a cipher to be secure, added to y, the time it takes
to deploy a new cipher, exceeds z, the amount of time before a cryptanalytic or
technological breakthrough might occur, or beyond the time when we may reasonably
predict the future state of technology, then we have surpassed the secure lifetime of
that cryptographic cipher. We believe that we have already passed that point in time.

The history of our industry is littered with broken ciphers and cryptographic
protocols, in fact the history of science is one of theories, once thought concrete and
inviolable, swept aside in the advent of new discovery. Newtons law of gravity held
for nearly two hundred and fifty years, until a patent clerk in Switzerland proved it to
be flawed.

We need to learn from that history, and we need to prepare for what promises to be
an uncertain and increasingly unpredictable future, because the security of our
communications systems now represents the security of nations, the sustainability of
free and democratic states, and the security of all the people of the world.



2 A way forward

2.1 eAES

What we propose is an intermediate solution. If in fact we have exceeded the
reasonable security lifetime of the existing form of the AES cryptosystems, and a new
solution can not be widely implemented before such time as these ciphers might be
broken, then we believe that an interim solution is the best current option.

This solution involves two steps:

1. The replacement of the differentially-weak internal key expansion function,
the ‘key schedule’, with a cryptographically-strong pseudo random
generator.

2. Increasing the number of transformation rounds to at least 2m, or at least
twice the best-known cryptanalytic attack against the AES ciphers.

The key schedule is essentially a key expansion function, that expands a small input
cipher key, into a much larger internal array of round-keys, used by the ciphers
transformation function to create a cipher-text output unique to that key. In the
Rijndael cipher, this key expansion function is the weakest part of the construction, it
does not produce cryptographic-quality output, and has been the target of several
serious related-subkey and timing-based attacks on the cipher. We propose that this
function be replaced with a cryptographically-strong pseudo-random generator.

We have produced a model implementation with this change; RHX (and the
companion AES-NI based AHX) [12], which uses cither the HKDF(SHA2) Expand
key derivation function, or a choice of the Keccak based ¢SHAKE XOF function. We
have also produced an example C based primitive RSX [13] which uses a fixed
implementation of the Keccak extended output function cSHAKE-256. Both
implementations use keyed pseudo-random generators that are widely accepted as
producing highly diffused output and are considered to be strong cryptographic-
quality generators.

Besides producing a more cryptographically secure output, (used to generate
Rijndael’s internal rounds sub-key array), replacing the key schedule with a
cryptographically-strong generator also allows for the safe addition of more
transformation rounds by securely generating the required longer subkey array. Using
an existing and well-regarded strong generator also eliminates the need to modify the
existing key expansion function, and replacing it with an ad hoc adjustment which
could prove to be insecure, and would require substantial study before it could be
used safely.

We have chosen both the HKDF(SHA2) Expand function and the Keccak based
cSHAKE, because these are both widely regarded within the cryptographic
community as being cryptographically-strong pseudo-random generators.

The HKDF version of these ciphers is inter-transitional, that until Keccak and its
cSHAKE derivative have seen more widescale usage, and hence more scrutiny from
our community, that some implementors may prefer the HKDF generator.

The HKDF variant can use either the SHA2-256 or the SHA2-512 version of the
hash function as the primary pseudo-random function, and the cSHAKE variants have
the ¢SHAKE-256 and the [experimental] ¢cSHAKE-512 options in our C++
implementations [12].



Each variant will produce a completely different output cipher-text, and so must be
considered as unique versions of the cipher extension. Additionally, we have added an
information string (the distribution code property), that can be set in the cipher
implementations as a cipher-tweak, this user definable string can be used to safely
produce a unique cipher-text output.

By using these variations, and in fact a flexible model promoting interchangeability
throughout our library implementation, we aspire to create a real-time upwardly-
flexible security paradigm. One in which within the context of a broader domain-
based communications system, the security of data transmissions can be actively
modified during a hand-shake negotiation; parameters can be set at run-time, even the
ciphers and protocols can be interchanged, guaranteeing the best possible security
profile can be achieved and maintained.

The rate of technological progression has accelerated dramatically over the last
century, and continues to expand, the advent of strong Al coupled with emerging
quantum-based computing systems may serve to vastly accelerate our technological
development, and with this in mind, we believe that a security-flexible core
cryptographic library is essential to maintaining sustainable long-term security.

We also propose an increase in the number of transformation rounds; the number of
mixing cycles applied to the state.

We will not consider the AES-128 or AES-192 members of the AES family of
cryptosystems, because currently known attacks using quantum computers [10][14]
will one day be able to break these variants, rendering them thus unsuitable for the
purposes of long-term security.

The eAES, (the formal name of the proposed extension to AES) 256-bit variant is
set to 22 rounds, or twice the known number of rounds broken by related subkey
attacks. This is an increase of 8 rounds, from the 14 rounds used currently by the
NIST standardized form of AES-256.

We have produced a 512-bit key variant, that is set to 30 rounds. There is a great
deal of resistance within our industry to the use of 512-bit keys, many cryptographers
consider them as an unnecessary key length, but one must consider what these
assumptions are predicated upon; that known quantum attacks that halve the key
space will never be improved upon, that no new attacks quantum or cryptanalytic
based will ever be discovered, and that we can accurately predict the future of our
technological development for at least fifty years.

We believe the fault in these arguments to be clear and self-evident, and that if we
are to establish real long-term data protections, we must become better at anticipating
the unknown.

The library also contains a 1024-bit variant which is set to 38 rounds, provided for the
purposes of future experimentation.

What we are bringing to your consideration, is a working and provably-secure
solution to the question of the AES ciphers sustainable long-term security. It would
use the existing rounds function, the core component of this cipher, and so preserve
the large investments that have been made in this technology, while strongly
mitigating many of the most serious known attacks against the AES family of
cryptosystems.

It would require only that existing implementations substituted the key schedule’s
expansion function with a cryptographically-secure alternative, and provide the



increase in rounds necessary to restore the ciphers current security margins to
acceptable levels.

The performance penalty incurred by the key schedule when using a
cryptographically-strong generator is a negligible one-time penalty for each encrypted
stream and so does not significantly impact the transformation of medium to large
data sets.

The increase in rounds will have a small effect on the speed of the cipher, but this
must be considered as a reasonable cost, required by the necessary increase in the
security of the cipher. We have been using AES for almost twenty years, and so
transitioning to versions with increased security should not be wholly unexpected, and
the relative cost incurred is still negligible, especially when considering the enormous
increase of hardware speeds and technologies such as embedded instructions, that
have more than compensated for this small loss in performance.

2.1 Pseudo code

The AES rounds function:

Transform(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])

begin
byte state[4,Nb]
state = in

AddRoundKey(state, w[0, Nb-1])

for round =1 step 1 to Nr-—1

SubBytes(state)

ShiftRows(state)

MixColumns(state)

AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
end for

SubBytes(state)

ShiftRows(state)

AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
out = state

end

Figure A.1: Note that the rounds function is identical to the AES specification. The
number of rounds processed in the main loop is determined by the value of Nr.

The secure key expansion function:

SecureExpansion(byte key[4*Nk], word w|Nb*(Nr+1)], word Nr)
begin

word ks =Nb * (Nr+1) * 4
byte tmp|[ks]
tmp = HKDF-Expand(key, dc, ks)




while (i < ks)
w[i/4] = word(tmpli], tmp[i+1], tmp[i+2], tmp[i+3])
i=it4

end while

end

Figure A.2: The octet key size ks is calculated as the ciphers block size in 32-bit
words Nb, times the number of rounds Nr + 1, times the number of octets in each 32-
bit word.

The temporary array of bytes tmp is generated by HKDF Expand (or alternatively
cSHAKE) using the input cipher key and the optional distribution code dc arrays as
input. This array of octet sized integers is then converted to 32-bit words and added to
the rounds subkey array w.

2.2 Horizon 2040 and beyond
We believe the future of symmetric ciphers is in authenticated stream ciphers. They
are fast, trivial to parallelize, easy to use and thus less likely to incur implementation
mistakes, and as we have learned, authentication has become an essential aspect to
ensuring data integrity.

We have implemented several authenticated stream ciphers based on the Threefish
and ChaCha ciphers, which can use either the Keccak based KMAC, or
HMAC(SHA2) message authentication code generators, the option selected through a
constructor setting. These ciphers have been strengthened in keeping with our mission
to provide real and sustainable long-term security, and are implemented in C++ using
CPU intrinsics and optional multi-threaded parallelization [12].

These stream cipher primitives have also been implemented with 512-bit keys, (and
in the case of Threefish, a 1024-bit key), and an increase to the number of
permutation rounds in the 512-bit and 1024-bit key versions, in accordance to our
currently projected security levels that we feel will be required for periods exceeding
the 2040 horizon.

2.3 Cryptanalysis

In annex, a first cryptanalysis of the suggested engineering changes to AES, done by
researchers at Kudelski AG in Chéseaux, Switzerland, is provided.

2.4 Future work

A performance analysis of the suggested changes to AES will be published in a later
phase on: git.fsfe.org/Stie/Pqsym . Likewise and as has been suggested by Kudelski in
their report, physical attacks on hardware implementations of eAES will be studied.
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EXECUTIVE SUMMARY

In & context where the amount of research on guantum computers is increasing, threats for
classical cryptography appears.

For asymmetric crypiography and due to the efficiency of Shor's algorithm [15], NIST has
launched a challenge to solicit, evaluate, and standardize one or more quantum-resistant
public-key cryptographic algorithms.

Due to the quantum Grover's algorithm for hash functions with = bits input, the preimage

resistance is reduced to 22 ([12], [13]). It has the same impact on the key search [2], in case
of symmefric block ciphers, thus doubling the key size can effectively enable to maintain
security level.

The purpose of the AHX would be to offer a solution for embedded devices in the context of
5G and resistance to attacks possible on post-quantum computer.

It has been requested by itk AVitcbwS Sarl to Kudelski to provide some feedbacks regarding
the security of the current proposal, that is the main geal of this report.
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INTRODUCTION

The first high level security analysis presented in this repert is focus on the block cipher
called AHX.

The analysis has been conducted using only the source codes available on following links:

s |httpsuigithub.comySteppenwolfef S CEX tree/master/CEXAXH. ;

i f 5 f i . |

« |httpsuigithub. comdSteppenwolfe6 s/ CEX/blob/masteCEXHMAC . cop

(Others files might have been taken into account but due to short time constraint, it has not
been possible.

Mote that other similar block cipher proposals can be found in the CEX crypto library: the
comments in the analyzed code mention THX which is based on the Twofish Block cipher,
and SHX which is based on the Serpent block cipher. The difference is the underiying block
cipher. According to the developer, Twofish is no longer present in the latest revision of the
code and has been replaced by authenticated stream cipher implementations of Threefish
256/512M1024. AHX is indeed the most interesting of such instances, because optimized
hardware and precessors are generally available for the AES block cipher.

1. AHX OVERVIEW
1.1. High level proposition

AHX seems to have a flexible design to enable the user to handle the required security level
according to the context.

Key lengths from 128 to 1024 bits is handled, but there no boundary check on key length.
According to the developer, the supported key sizes in extended mode are fixed at 256, 512,
and an experimental 1024-bit.

For a 2048-bit use-case the hash function to use in the key schedule is not consistent to the
security level expected or is missing. According to the developer, there is no 204B-bit key
option and the key schedule generator options are limited to HKDF{SHAZ2-2568/512) or
CSHAKE-256/512/1024. This is set through the constructors CipherExtension parameter. The
cipher can process 128, 192, and 256-bit keys in standard mode, and 256, 512, and 1024-bit
keys in extended mode. There are no other legal key sizes, and using an unsupported key
size will throw an exception.

The selection of the security level is also linked to time and before primitive selection
following question should be answered: how long shall the data be safe?

One goal of this analysis will be to give first elements regarding the targeted security level.

In[Figure 1]we have summarized the proposal.

Canficential 0 2018 Nagravsion 54 0 Ad rights reserved
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Security level in context of Security level in context of
dlassical computer Post Quantum computer

128 bits ? 256 bits 1B bits ? 512 bits
ALS 256 bits. AL% 256 bits 266 hits
AES 122 bits wa”uﬂ MY 250 h-i“ AKX 1024 bits
ANX 512 bt

Figura 1: Security levels targeted accerding to sigoritnms

1.2. AHX Key schedule
AHX can use wo different key schedules.

The first one is the standard AES key schedule, which is fully specified for AES for 128, 192
and 258-bit keys. AHX extends it io be able to process 512-bit keys. The length of the key
determines the number of rounds (and round keys); given k < 512 the number of key bits,

the number of rounds is given by R, = :—? + 6.

The second key schedule described the comments of the analyzed code is @ HKDF based
on HMAC with selectable hash primitive. According to the developer there are actually 5
generator options:HKDF(SHAZ-256). HKDF(SHA2-512), cBHAKE-256. cBHAKE-512, and an
experimental cSHAKE-1024. The chosen hash function can be any of those implemented by
the CEX library (e.g. Blake2, Skein, SHA3). According to the developer the only options for
hash function with either HKDF, HMAC, or these ciphers is SHAZ-258 or SHAZ-512, and
cSHAKE uses the Keccak permutation. Using a nen-SHAZ hash function with HMAC or
HKDF will throw an exception. By looking at the code we can see that possible choices are
SHA-2 (256 & 512) and the more recent SHAKE-258 and SHAKE-512 hash functions. The
round keys are generated by calling iteratively the HKDF until all needed bytes are

generated. The number of rcunds in this case is given by &, = Min {:—1 + 14, HH}_

Hash function in the key

Kay langth (in bits)

schedule
258 SHAZSE
512 SHAZSE
Canficential 0 2018 Nagravsion 54 0 Ad rights reserved
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1024 | SHAS12
Table 1: Hash funciions used in the extended key schedule according 1o key length

1.3. AHX Block cipher
AHX block cipher round is fully equivalent to AES cne.

As defined in the key schedule based on HKDF, the number of rounds is defined according
to the input key size.
Given k = 1024 the number of key bits: &, = Min {;‘—2 +14, 33]_

Kay langth (in bits) Rounds numbears

258 22
512 30
1024 38

Table  Round numbers according 1o key length
belnw shows an overview of the AHX executiocn when using the HKDF-based key

schedule with SHA255 underlying hash function and for key length that should not exceed
512 bits.
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Figure 2: AHX global scheme

2. SECURITY ANALYSIS

In|Figure 2|we have pointed in red the elements that must be handled carefully to guarantes
the security level of the whole algeorithm.

2.1. Consistency of the primitives

In the analyzed library CEX, it is proposed to manage the security consistency of the
cryptographic primitives by the LegalRounds{} and LegalkeySize() functions in the code, it
might be interesting to enforce that. According to the developer the LegalRounds property
accessor is no longer a part of these ciphers. Rounds are fixed at 22, 30, and 38,
cormesponding to key sizes 256, 512, and 1024-bit and the rounds count is not user-
definable.

The construction proposes others hash functions for the key schedule and should include the
alternatives for the block cipher rounds construction. According to the deweloper only
HKDF({SHA2) and cSHAKE are implemented. Any other choice will throw an exception.
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Indeed, if a weakness is found on the AES structure in the future, it might be possible to have
it whatever the key size.

2.2. Key

Regarding the key element and according to security level expected, a specific attention
must be paid to following elements and which are partially or not covered by the proposal:
+ The quality of the random number generator used to guarantes the expected entropy
of the key.
+ The secure siorage of the key including confidentiality and integrity.

In the analyzed files, the enforcement of the key size in bits is partially or not cowered.
According to the developer the key sizes are now enforced. Using an unsupported key size
will throw an exception.

2.3. Input Block size

A block cipher input block size should be such that no complete dictionary can be built for a
given key. Nowadays it is guite common to set the block size to 128 bits, which is considered
to completely protect from such brute force attacks.

Moreover, if we consider the inputfoutput size of the block cipher, there are (2'*®)! possible
permutations. Whatever the key lengths considered -258, 512 or 1024 bits (even 2048 bits)
thiz is much larger than the key spaces, so collisions are not expecied.

However, some academic results have alerted that it might not be enough to just double the
key length of the symmetric primitives to block the attackers from the post-quantum world [8].
And given that the AHX is proposed to handle 512-bit security level (and maybe more) -
considering quantum resistance, the block size bit length should also be taken into account
and solution to handle larger block size should be investigated. The developer mentions that
the propcsed solution is meant to be an intermediate drop-in replacement for AES, hence
Rijndael with a 258 block size is problematic. Larger block sizes are awvailable with the
Threefish and ChaCha standard and extended stream ciphers.

We argue that maybe the choice could be to switch to 256 bits block size, although a
thorough analysis of attack scenaries should be produced to justify the choice.

We note that the original Rijndael proposal already specifies the possible choice of 256-bit
block size, possibility that has not been retained {or judged valuable) for the AES standard.

2.4. Key schedule

It appears important here to recall security breach published on AES 256 bits key. Indeed, it
has been proved by researchers that AES-192 and AES-256 are weaker than AES-128
against some classes of attacks [6).

This can be explained at very high level by the fact that AES-256 tries to squeeze two times
the key information into a construction that was essentially built for 128-bit keys, and this has
serious side effects.
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The attacks are related-key and related subkey attacks’ which requires the cryptanalyst to
have access to plaintexts encrypted with multiple keys that are related in a specific way -a
scenario which is debatable. They are also very far to be practical.

However, this work casts sericus doubts on the possibility to extend the AES to bigger key
sizes, at least on theoretical grounds.

This can have sericus implications for the first key schedule of AHX, namely the one fully
based on AES but extended to accept 512-bit keys. According to the developer, the 512bit
key option using the Rijndael key schedule was an artifact. and not recommended in the
literature. It has been removed from the cipher. In our opinion the author of AHX would have
to show or at least mention that such attacks are not feasible against its proposal of
extended AES key schedule.

It is not possible for us to validate the hypethesis, given the limited time available for this
preliminary analysis.

The related key attack scenario is certainly not applicable to the second proposed AHX key
schedule, namely the one based on HKDF. In this case round keys are derived with a one-
way cryptographic function, which has higher computational cost, but certainly renders the
proposal more attractive.

HKDF is well known and studied. If the hash function is correctly chosen and implemented, it
enables to produce many more round-keys keeping maximal entropy for each round key.

The choice of the KDOF used to generate the round keys essentially determines the upper
bound on the security of the scheme. The HKDF is built on HMAC primitive, which in turn is
based on a hash function.

In the code comments, we can clearly see the following choices mentioned:

=  SHAKEZ258
+ SHAKES12
» HKDF-SHA2-256
+ HKDF-SHAZ2-512

According to the developer, the options are:
» HKDF(SHAZ2-256)
» HKDF(SHAZ2-512)
» CSHAKE-258
+ CSHAKE-512
+ and an experimental cSHAKE-1024

The choice poses constraint on the actual key space of AHX.

SHAZ2-256 and SHAKE256 hawe claimed security of 256 bits against pre-image attacks
(collision attacks are not meaningful in the KDF scenario) [Note that SHAKE2SE should be
used in this case with at least S12-bit output. According to the dewveloper the cSHAKE

'[hitps e orint icr,0rm/2008/374 pdflSection 4.2
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functicn will undergo the same number of permutation cycles regardless if the output is less
than the rate of 1088 bits per cSHAKE-258].

This is coherent with the fact that the main key can be up to 512 bits long; in fact, Grovers
algarithm [9] run on a quantum computer, would break such keys with a 27 effort, which is
a value coherent with the choice of either SHAZ2-256 or SHAKE256. Additicnally, the Boolean
Equation Solving break proposes that AES-256 could be broken in 24747,

Therefore, such choice is possible if the key of AHX is no lenger than 512 bits.

For longer keys, one could choose either SHA2-512 or SHAKES12, but knowing that for the
same motivations cutlined above, in this case the key space of AHX cannot exceed 1024
bits.

Thus, in the context of post quantum computer and considering an attacker could exploit cne
reund key leakage to get the original key using pre-image attack, we would recemmend the
following:

s  SHA255-SHAKEZSE for key up to 512 bits to guaraniee a security level up to 258 bits

+  SHAS512-SHAKES12 for key up to 1024 bits to guarantee a security level up to 512
bits

It i= at this moment unclear how cne would attain a key space for AHX longer that 1024 bits.
We think it would be desirable to limit AHX key length to 1024 bits. According to the
developer key length is fixed at 1024-bit maximum.

The info and salt elements that are provided to the HKDF are less critical but could bring
additional entropy if needed. According to the developer the HKDF Expand function is used
in these ciphers, cnly HKDF Extract uses the salt input parameter, which would reduce
efficiency with an extra permutation call. and the halved output of that call would mean
|PADYOPAD arrays in HMAC are only half populated with p-rand.

The one-way property of the second proposed key-schedule is an asset to protect the
implementation regarding attacks; an attacker would need to get all the round-keys to break
the full encryption function (if the original key is well protected and does not leak during first
HMAC execution).

2.5. Rounds number

The formula for choosing round number should be justified. It is in general quite dangenous
for a block cipher to let the user decide the number of rounds, because that would lead to
trivial attacks (differential analysis of n and n+1 rounds). According to the developer It is
justified per the original Rijndael design:

Kw= key byte-size / 4
Mr=Kw+8

which iz 22 rounds for a 512-bit key. However, because 11 rounds have been broken by a
related subkey attack, he believes that 22 rounds or 2n the best attack should be the

? hitps:fariv.org/pdi1 712.06239 pdf
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minimum, and is applied to the 256-bit key instead. The 512-bit key uses an intermediate 30
rounds, and the 1024-bit key uses 38, which matches the original formula. If more than 38
rounds are ever reguired, the cipher should be abandoned at that point.

Examining AHX code, it seems that round number is implicitly determined by the key length,
s0 it seems correct (not freely selectable by user), and via the KDF a different key length
would in any case lead to different KDF output. We only mention that in source code
comments it is reported that number of rounds is selectable by user, which seems to
confradict what has been said.

We think that a mare desirable methed would be to let the number of rounds enter the KDF
functicn as ancillary data. This would enforce the security. According to the developer the
rounds counts are fixed.

Regarding the number of rounds, we would like to state the following: the amount of (round)
key bits that can be intreduced into a round of AES is 128, If the AES standard proposed 10
reunds for 128-bit keys, we would conservatively assume that AES with 258-bit keys should
feature 20 rounds. According to the developer using at least 2n the best-known aftack, AES
with 256-bit keys should feature 22 rounds.

The AES standard dictates 14 rounds for 256-bit keys, and in fact we have seen that its
security is far from ideal under certain scenario (related key attacks).

If we conservatively assume that 10 rounds would be needed for every 128 bits of key
material, this would mean 40 rounds for 512-bit keys. The developer mentions Bruce
Schneier who recommended 20-28 for a 258-bit key”. 40 rounds seems excessive to him and
might impact performance, particularly on mobile devices,

The formulas chosen by the AHX author are less conservative, as they prescribe:

+ 30 rounds for 512-bit keys using the KDF key schedule

» 22 rounds for 512-bit keys using the extended AES key schedule. Mote that according
to the developer, that option has been removed from the cipher design, it was only
there for historical purpeses, and not recommended in the [iterature.

The choice seems particularly non-conservative for the extended AES key schedule. As we
already discussed, the KOF key schedule seems a more robust proposal overall.

Deeper analysis should be conducted for 1024-bit and 2048-bit keys use cases.
2.6. Implementations

The AHX cipher can be implemented in software and dedicated hardware [(ASIC and/or
FPGA). It is based on well-known cryptographic primitives, and from a functional peint of
view should not pose problems for a skilled coder/designer.

* hitps:ffwwne schneier com/bloglarchives/2009007 fanother_new_aes. himl
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According to the context, we want to mention that implementaticns should be secure against
active (fault) and passive [side-channel} physical attacks (exploiting for example cache
and/or timing differences).

The developer commented this as follows: “the permutation functions in both the Keccak and
SHAZ implementations are by default unrclled (as is every permutation function in the library
incleding Blake2, Skein, Threefish, ChaCha etc.}). Both an unrolled and a compact form of
the permutations are available and can be set per the definition of the
CEX_DIGEST_COMPACT and CEX_CIPHER_COMPACT contained in CexConfig.h. The
SHAZ.h class also contains the SHAZ-MI instructions which are selected if available. The
HMAC and HKDF implementations should be protected from side-channel attacks. Every
permutation in the library has both a compact permutation used for memory constrained
devices, and a wersion of the function that has been completely unrolled and written for
timing-neutrality, this includes each hash function (Blake2, Keccak, SHAZ and Skein}, as well
as symmetric cipher permutations (ChaCha and Threefish), with the choice of permutation
functicn defined in CexConfig.h. The SHA2-256 implementaticn also defaults to the SHA-NI|
implementation if those instructions are available on the CPU".

While techniques for doing that are quite known in the literature, especially for software
implementations, the addition of more cryptographic primitives (KDF, HMAC, hash functions)
that manipulate key material means that every one of these primitives should be secured
against such attacks, making the complexity and therefore the cost of the implementation
higher.

In addition, for pure software implementation specific attention must be paid to keys, round
keys storage and entropy generation. According to the developer, the source of entropy is
alzo mentisned, the default is ACP [Auto entropy Collection Provider) which uses a collection
provided by the collection and concentration of every available entropy provider (RDRAND,
RDSEED, CPU Jitter, and the system provider) along with hundreds of operating system
timers and system unigue values, all concentrated through cSHAKE (the strongest entropy
prowider found was selected, and improved to made it a lot stronger).

It is certainly possible to implement the AHX block cipher with KDF key schedule in a
dedicated chip (ASIC) and programmable logic (FPGA). It would require deeper analysis
regarding memory constraints, performances requirements and physical attacks. of the
whele block cipher.
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